- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Goenezen, Sevan (4)
-
Kotecha, Maulik (2)
-
Luo, Ping (2)
-
Mei, Yue (2)
-
Abbasszadehrad, Amirhossein (1)
-
Garner, Geoffrey (1)
-
Hematiyan, Mohammad R. (1)
-
Kim, Baik Jin (1)
-
Kotecha, Maulik_C (1)
-
Rabke, Stephen (1)
-
Reddy, Junuthula_N (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mei, Yue; Goenezen, Sevan (, International Journal of Mechanical Sciences)
-
Luo, Ping; Mei, Yue; Kotecha, Maulik; Abbasszadehrad, Amirhossein; Rabke, Stephen; Garner, Geoffrey; Goenezen, Sevan (, MRS Communications)We present for the first time the feasibility to recover the stiffness (here shear modulus) distribution of a three-dimensional heterogeneous sample using measured surface displacements and inverse algorithms without making any assumptions about local homogeneities and the stiffness distribution. We simulate experiments to create measured displacements and augment them with noise, significantly higher than anticipated measurement noise. We also test two-dimensional problems in plane strain with multiple stiff inclusions. Our inverse strategy recovers the shear modulus values in the inclusions and background well, and reveals the shape of the inclusion clearly.more » « less
-
Goenezen, Sevan; Kotecha, Maulik_C; Reddy, Junuthula_N (, The Journal of Strain Analysis for Engineering Design)Polycrystalline materials consist of grains (crystals) oriented at different angles resulting in a heterogeneous and anisotropic mechanical behavior at that micro-length scale. In this study, a novel method is proposed for the first time to determine the [Formula: see text] crystal orientations of grains in a [Formula: see text] domain, using solely [Formula: see text] deformation fields. The grain boundaries are assumed to be unknown and delineated from the reconstructed changes in the crystallographic orientation. Further, the constitutive equations that describe the mechanical behavior of the domain in [Formula: see text] under plane stress conditions are derived, assuming that the material is transversely isotropic in 3D. Finite element based algorithms are utilized to discretize the inverse problem. The in-house written inverse problem solver is coupled with Matlab-based optimization scripts to solve for the mechanical property distributions. The performance of this method is tested at different noise levels with synthetic displacements that were used as measured data. The reconstructions deteriorate as the noise level is increased. This work presents a first milestone in the verification of this novel technology with synthetic data.more » « less
An official website of the United States government
